Big data, a strategy to prevent academic dropout in HEIs

Authors

  • Arturo Amaya-Amaya
  • Franklin Huerta-Castro
  • Carlos O. Flores-Rodríguez

DOI:

https://doi.org/10.22201/iisue.20072872e.2020.31.712

Keywords:

Big Data, analytical model, dropout, Mexico

Abstract

The diversification of educational modalities such as e-learning and b-learning has made it possible to increase coverage rates in higher education. However, as more students enter universities, more of them fail to complete their undergraduate studies, thus detonating dropout rates, a problem that not only has high economic and social costs at the national and international level, but also generates conditions of exclusion and poverty. The following article analyzes the negative effects of academic dropout, as well as the characteristics of Big Data, which is a viable and pertinent technological solution to provide answers to this problem. On the other hand, the authors also present the main characteristics of the implementation of the Big Data Analytical Model of the Universidad Autónoma de Tamaulipas (UAT), as well as its results, which allowed to identify causes and factors that influence university students' desertion.

Downloads

Download data is not yet available.

Author Biographies

Arturo Amaya-Amaya

Mexicano. Doctorado en Educación Internacional, Universidad Autónoma de Tamaulipas (UAT), México; Maestría en Big Data & Business Intelligence, Universidad de Zaragoza, España; Maestría en Administración de Empresas, Universidad Autónoma de Nuevo León, México. Profesor Investigador de la UAT, México. Temas de investigación: Big Data, educación a distancia.

Franklin Huerta-Castro

Mexicano. Maestría en Big Data & Business Intelligence, Universidad de Zaragoza, España.  Profesor Investigador de la Universidad Autónoma de Tamaulipas, México. Temas de investigación: Big Data.

Carlos O. Flores-Rodríguez

Mexicano. Maestría en Big Data & Business Intelligence, Universidad de Zaragoza, España.  Profesor Investigador de Empresa ExchangeHub LLC – Atlanta, GA. Temas de investigación: Big Data.

Published

2020-06-01

How to Cite

Amaya-Amaya, A., Huerta-Castro, F., & Flores-Rodríguez, C. O. (2020). Big data, a strategy to prevent academic dropout in HEIs. Revista Iberoamericana De Educación Superior, 11(31), 166–178. https://doi.org/10.22201/iisue.20072872e.2020.31.712

Issue

Section

Resonances